
A Methodology for Replicating Historical Exploits
on EVM-Compatible Blockchains

Zhiyang Chen∗, Phillip Kemper∗, Yi Liu†, Jan Gorzny∗, Diego Siqueira∗, Yuekang Li‡,
Donato Pellegrino∗, and Martin Derka∗

∗Zircuit
Email: {jeff, phillip, jan, diego, donato, martin}@zircuit.com

†Quantstamp
Email: yi@quantstamp.com

‡University of New South Wales
Email: yuekang.li@unsw.edu.au

Abstract—Replicating historical exploits on blockchain plat-
forms is essential for testing emerging real-time defense mech-
anisms. However, existing tools primarily fork blockchain states
and replay original exploit transactions rather than replicating
these hacks in new blocks. This paper introduces a methodol-
ogy for replicating exploit transactions across EVM-compatible
blockchains, enabling testing of new security measures. By ad-
dressing key challenges in address mapping, contract deployment
and storage configuration, our approach successfully replicates 18
security challenge exploit transactions and 12 real-world exploit
transactions. This evaluation results confirm the methodology’s
effectiveness in recreating both controlled challenges and real-
world hacks, marking a significant advancement in smart con-
tract security research and testing.

Index Terms—Blockchain, Smart Contract, Ethereum, Trans-
action, Fork, Testing, Ethereum Virtual Machine.

I. INTRODUCTION

Blockchain technology has revolutionized financial trans-
actions and data storage by introducing a decentralized, re-
silient, and programmable ledger that operates globally. Un-
like traditional financial systems, which rely on centralized
intermediaries, blockchain systems allow users to transact
directly and transparently with one another. The introduction
of smart contracts [1] on platforms such as Ethereum [2]
has further expanded blockchain capabilities, enabling users
to deploy deterministic programs that execute directly on-
chain, removing the need for a trusted third party. These
smart contracts serve as the backbone for a diverse range of
decentralized applications (DApps) in areas such as finance,
gaming, and supply chain management, forming a dynamic
ecosystem of programmable digital assets. As of November
10, 2024, the Total digital asset Value Locked (TVL) across
4, 210 DApps has reached more than $104 billion USD [3],
underscoring the economic significance and rapid adoption
of these decentralized financial systems. The rapid growth
of blockchain technology has also introduced new security
challenges, as malicious actors exploit vulnerabilities in smart
contracts and blockchain infrastructure. Also as of November
10, 2024, financial losses from security breaches in DeFi
protocols have surpassed $9.04 billion USD [3], highlighting
an urgent need for improved security mechanisms.

To address these security threats, various approaches have
emerged to detect and mitigate attacks on smart contracts.
Static analysis tools [4]–[6] are widely used to scan smart
contracts for vulnerabilities, while numerous fuzzing tools [7]–
[14] have been developed to stress-test contract behavior. In
particular, ityfuzz [14] applies fuzzing to newly deployed
smart contracts, detecting vulnerabilities as each new block
is generated [15]. Meanwhile, proactive defenses such as
front-running prevention techniques [16]–[18] protect users
from value extraction by bots and malicious actors within
the mempool. Another promising approach operates at the
sequencer level; for instance, Zircuit’s “Sequencer Level Secu-
rity” (SLS) [19] introduces security checks directly within the
sequencer layer to detect and quarantine malicious transactions
before they are included in the blockchain.

However, testing the effectiveness of these novel real-
time security mechanisms on existing or new blockchains
remains a significant challenge. Security tools deployed on
live blockchains often cannot be fully evaluated until a new
attack happens, limiting the ability to measure their respon-
siveness under actual conditions. Although past hacks offer
valuable case studies, until today they are typically used by
forking the specific block where the hack occurred, which
does not replicate a live environment with real-time block
generation. As a result, this testing approach cannot assess
a security mechanism’s ability to detect an attack dynamically
as it unfolds. Moreover, newer blockchains with brand-new
security mechanisms often lack a history of hack transactions
on their chains, creating an urgent need to replicate known
exploits from established blockchains. By forking these exploit
transaction, these platforms can better evaluate their defenses
under realistic conditions.

To the best of our knowledge, this paper introduces the
first methodology designed specifically for replicating histor-
ical exploit transactions across EVM-compatible blockchains,
enabling comprehensive testing of security mechanisms in
controlled environments. Our approach redeploys the contracts
involved in the original exploit transaction, ensuring high
fidelity to the authentic exploit. Although this paper centers
on replicating historical exploit transactions, our methodology

is versatile and can be adapted to replicate any other types
of transaction, which are typically much simpler than exploit
transactions. The remainder of this paper is organized as
follows. Sections II and III cover related work on transac-
tion replication and provide essential background information.
Section IV outlines our methodology for replicating historical
exploits. Section V discusses the limitations of this approach.
Finally, Section VI concludes this paper.

II. RELATED WORKS

EthReplayer [20] and ContractVis [21] both provide tools
for replaying historical transactions of smart contracts. How-
ever, they are limited to replaying past transactions and do
not support real-time replication or cross-chain forking of
transactions, features that are central to the approach proposed
in our methodology. Other industrial tools, such as BlockSec
Fork [22] and Tenderly Fork [23], offer users the ability
to replay transactions to observe and debug each execution
step. However, these tools are designed for debugging existing
transactions and do not address the replication of transactions
into new blocks or across chains, a capability central to the
approach presented in this paper. Ressi et al. [24] review the
advancements in AI-enhanced blockchain technology. Despite
their insights into optimizing blockchain through AI, their
discussion remains conceptual and does not detail practical
real-time replication or cross-chain transaction capabilities as
our work proposes.

III. BACKGROUND

A. Smart Contract and Ethereum Virtual Machine (EVM)

Smart contracts are self-executing programs that automate
trustless transactions directly on blockchains, removing the
need for intermediaries. Foundational contracts, like stable-
coins and oracles, can serve as building blocks for more
complex applications. Proxy-implementation contracts (or
upgradable contracts) allow smart contracts to adapt by
delegating function calls through a proxy to an implementation
contract, which holds the executable logic while the proxy
maintains modifiable storage. This design enables redeploy-
ment and updates, which is essential for forking contracts to
new blockchains. The Ethereum Virtual Machine (EVM) is
a Turing-complete runtime environment for executing smart
contracts on Ethereum and EVM-compatible blockchains,
interpreting bytecode from programming languages like So-
lidity [25]. Our methodology can be applied to any EVM-
compatible chain.

B. Types of Smart Contracts in an Exploit Transaction

Within the EVM, all program logic is encapsulated in smart
contracts. Different types of contracts participate in exploit
transactions, each of which requires distinct handling in the
methodology described later in Section IV.
• Hacker Contracts: Typically closed-source, these contracts

execute complex logic, such as reentrancy callbacks. Hacker
contracts often include anti-front-running tactics, such as
enforcing specific tx.origin or block.timestamp

conditions, which prevent straightforward execution of re-
deployed contracts and require bytecode modification to
bypass. More sophisticated anti-front-running mechanisms
may involve multiple contracts and complex logic, as de-
tailed in prior works [26], [27].

• Victim Contracts and Other Contracts: Victim contracts
belong to targeted protocols that lose funds during an attack
and may be closed- or open-source. Other contracts, includ-
ing foundational contracts, may also be closed- or open-
source. They are handled similarly within our methodology.

C. Key Challenges

The simplest approach to replicate hacks would be to
redeploy the same set of contracts with identical storage
configurations and then execute the exploit. However, this
naive approach presents three key challenges:
Challenge 1: Address Changes. Redeployed contracts cannot
retain their original addresses, whether they are redeployed on
the same blockchain as the original hack or on a different one.
This necessitates updating all address dependencies stored in
both the contract bytecode and storage.
Challenge 2: Deployment Failures. Certain contracts have
constructors that depend on specific conditions, such as being
deployed by particular addresses, which can lead to failures
when re-deployed.
Challenge 3: Contract Storage Configuration. Changes in
addresses disrupt storage configurations, particularly for slots
calculated through address hashing, complicating efforts to
replicate the original storage states.

In the following section, we outline how our approach
addresses these challenges.

IV. METHODOLOGY

Replicating a hacker contract without source code has been
thoroughly explored in previous front-running studies [26],
[27]. These works focus on replicating hacker contracts,
removing anti-front-running mechanisms, and executing the
modified contracts to front-run the original attack. Addition-
ally, community efforts to replicate and open-source hacker
contracts in significant blockchain hacks have been notable.
For instance, DeFiHackLabs [28] is a GitHub repository that
has cataloged and open-sourced 539 hack contracts since
November 6, 2017. In this methodology, we assume that the
hacker contract has already been successfully replicated with
all anti-front-running mechanisms removed.

However, even with access to the hacker contract, repli-
cating the hack transaction poses considerable challenges.
Typically, replicated hacker contracts are tested by forking the
specific block at which the hack occurred. In our case, we aim
to re-deploy all involved victim and other contracts at new
addresses and configure their storage accordingly. This setup
requires us to address Challenges 1-3 mentioned previously.

Given the original transaction hash and access to the hacker
contract, we propose the following methodology to replicate
the hack transaction on a new blockchain. As illustrated in
Figure 1, our approach replaces the original hacker’s address

with a new address, termed the “Blockchain Tester.” The
closed-source hacker contract is substituted with an open-
source “hacker replay” contract, sourced from front-running
studies or open-source repositories. The victim and other
infrastructure contracts are re-deployed at new addresses,
with storage configurations adjusted to reflect these changes.
Finally, we execute the replay contract to reproduce the hack
transaction under these modified conditions.

Fig. 1. An illustration of the forking process used to replicate historical
transactions in real-time across EVM-compatible blockchains.

A. Procedure

Step 1: Track Storage Accesses with Hack Transaction.
To replicate a given hack transaction, we begin by analyzing
its invocation tree to identify all contracts and storage slots
accessed during the hack. We track only the initial storage
reads (SLOAD) that have not been previously read or written.
Formally, each tracked storage read can be represented as
⟨contract, slot, value⟩. If the value is derived from
an address, we document the function used to calculate it,
e.g., ⟨contract, slot, f(addressA)⟩. For instance, in
an ERC20 token contract, a token holder’s balance may be
stored at a slot calculated as keccak256(k.p), where k is
the mapping key and p is the storage slot. More complex
cases, such as double mappings, may also arise. Fetching
invocation tree and tracking storage accesses in this manner
is well-documented and has been implemented in prior work
and tools [29]–[32].
Step 2: Deploy Other/Victim Contracts. To replicate the
setup of the original hack, we first distinguish the hacker
contracts from other contracts involved in the transaction.
Using Etherscan [33] labels like “deployed by XX Exploiter,”
we identify hacker contracts, while all other contracts are clas-
sified as victim or other contracts. To address Challenge 2, we
replace each contract’s constructor with an empty constructor
to prevent deployment failures. For closed-source contracts,
this is achieved by modifying the bytecode to remove the con-
structor. Once deployed, we link each implementation contract
to a proxy contract using the proxy-implementation pattern.
The proxy contract allows arbitrary storage modifications,
enabling us to accurately configure states in the next step.

Additionally, we use the CREATE2 opcode to deploy contracts
at predefined addresses, allowing us to know the contract
addresses in advance and set the implementation address in
the proxy contract accordingly. A one-to-one mapping is then
established between each original contract and the proxy
contract to its re-deployed contract, enabling us to replace
hard-coded addresses in the original bytecode with updated
addresses in the replicated setup (for instance, in Solidity,
constant addresses are embedded directly in the bytecode).
Step 3: Deploy the Attacker Contract. With the victim and
infrastructure contracts configured, we proceed to deploy the
hack replay contract. In this step, all original addresses within
the replay contract are replaced by the corresponding proxy
contract addresses, as per the one-to-one mapping established
in the previous step. This ensures that the replay contract
interacts with the replicated setup accurately, maintaining
consistency with the original exploit structure.
Step 4: Configure the Storage for Other/Victim Con-
tracts. In Step 1, we recorded all storage reads in the
format ⟨contract, slot, value⟩ or ⟨contract, slot,
f(addressA)⟩. We also established a one-to-one mapping
between each original contract and its proxy contract in Step 2,
and identified the addresses of the open-source replay contracts
replacing the original hacker contracts in Step 3. With this
information, we can now configure the storage for the victim
and other contracts. For each recorded storage slot, we set
its value to match the value captured in Step 1. For storage
slots derived from an address, we replace addressA with the
corresponding proxy contract address and recalculate the slot
value. Similarly, if addressA represents the hacker contract,
we substitute it with the newly deployed replay contract. This
process is repeated for each victim and infrastructure contract
to replicate the exact storage configuration recorded in the
original hack.
Step 5: Execute the Attack. In the final step, we initiate the
attack by invoking the relevant functions in the hack replay
contract, replicating the exact transaction sequence from the
original exploit.

B. Evaluation

We implemented a prototype of the proposed approach and
applied our methodology to replicate 18 hacks from the Damn
Vulnerable DeFi security challenges [34] and 12 real-world
hacks, as listed in Table I. We showcase1 our methodology
with the replication of a real-world hack.

V. LIMITATIONS

Our methodology faces limitations. It cannot accurately
replicate hacks caused by real-time blockchain properties like
block.timestamp, which are unique to specific blocks
and blockchains. Additionally, replicating exploits involving
significant amounts of blockchain-native tokens, such as ETH,
could be prohibitively costly and impractical. Our approach
also does not account for variations between blockchains, such

1Hack demonstration is available at https://github.com/jeffchen006/
Forking-Exploit-Transaction-between-Blockchains.

TABLE I
REPLICATED HACKS USING OUR PROPOSED METHODOLOGY

Hack Name Date Blockchain
Eminence 2020-10-25 eth
VisorFi 2021-12-21 eth
SMOOFSStaking 2024-02-28 polygon
Juice 2024-03-09 eth
FIL314 2024-04-12 bsc
NGFS 2024-04-25 eth
RedKeysCoin 2024-05-27 bsc
MetaDragon 2024-05-29 bsc
JokInTheBox 2024-06-11 eth
Lifiprotocol 2024-07-16 eth
YodlRouter 2024-08-14 eth
Bedrock DeFi 2024-09-26 eth

as network congestion, mempool dynamics, and gas prices. We
focus solely on forking transactions between blockchains, thus
excluding these elements from our scope.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a new methodology for replicating
historical exploits on EVM-compatible blockchains, address-
ing key challenges such as address dependencies, storage
configurations, and contract deployment. Our approach facil-
itates accurate replication of exploit transactions, enhancing
the evaluation of blockchain security mechanisms. Despite
challenges like handling real-time blockchain properties and
high native token costs, this methodology advances blockchain
security research significantly. Future work could extend the
methodology to non-EVM chains and explore generating test
cases for new DeFi protocols by replicating transactions from
established DeFi systems deployed on different chains.

REFERENCES

[1] N. Szabo, “Smart contracts: Building blocks for digital markets,” 1996.
[2] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” 2014, ethereum Project Yellow Paper, https://ethereum.github.
io/yellowpaper/paper.pdf. [Online]. Available: https://ethereum.github.
io/yellowpaper/paper.pdf

[3] “DeFiLlama,” https://defillama.com/, 2024, DeFi Overview.
[4] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,

E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
Ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

[5] Securify, Sofware Reliability Lab, 2019. [Online]. Available: https:
//securify.ch/

[6] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: a smart contract security analyzer for composite vulner-
abilities,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 454–
469.

[7] B. Jiang, Y. Liu, and W. Chan, “ContractFuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[8] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum
smart contracts (SoK),” in International conference on principles of
security and trust. Springer, 2017, pp. 164–186.

[9] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for Solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778–788.

[10] Echidna, Trail of Bits, 2019. [Online]. Available: https://github.com/
trailofbits/echidna

[11] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1398–1409.

[12] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,”
IEEE Transactions on Dependable and Secure Computing, 2020.

[13] Y. Liu, Y. Li, S.-W. Lin, and Q. Yan, “ModCon: A model-based testing
platform for smart contracts,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1601–1605.

[14] C. Shou, S. Tan, and K. Sen, “Ityfuzz: Snapshot-based fuzzer for smart
contract,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 322–333.

[15] Fuzz.land, “Fuzz.land: Platform for smart contract fuzzing,” https://fuzz.
land/, accessed: 2024-11-10.

[16] Z. Li, J. Li, Z. He, X. Luo, T. Wang, X. Ni, W. Yang, X. Chen,
and T. Chen, “Demystifying DeFi MEV activities in flashbots bundle,”
in Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, W. Meng, C. D. Jensen, C. Cremers, and
E. Kirda, Eds. ACM, 2023, pp. 165–179. [Online]. Available:
https://doi.org/10.1145/3576915.3616590

[17] W. Zhang, L. Wei, S. Cheung, Y. Liu, S. Li, L. Liu, and M. R.
Lyu, “Combatting front-running in smart contracts: Attack mining,
benchmark construction and vulnerability detector evaluation,” IEEE
Trans. Software Eng., vol. 49, no. 6, pp. 3630–3646, 2023. [Online].
Available: https://doi.org/10.1109/TSE.2023.3270117

[18] “MEV bot runner ‘c0ffeebabe.eth’ returns $5.4 million amid curve ex-
ploit,” 2024. [Online]. Available: https://www.theblock.co/post/242136/
mev-bot-runner-c0ffeebabe-eth-returns-5-4-million-amid-curve-exploit

[19] M. Derka, J. Gorzny, D. Siqueira, D. Pellegrino, M. Guggenmos, and
Z. Chen, “Sequencer level security,” CoRR, vol. abs/2405.01819, 2024.
[Online]. Available: https://doi.org/10.48550/arXiv.2405.01819

[20] Y. Huang, R. Wang, X. Chen, C. Yang, and Z. Zheng, “Ethereum
transaction replay platform based on state-wise account input data,”
IEEE Transactions on Services Computing, 2024.

[21] P. Hartel and M. van Staalduinen, “Truffle tests for free–
replaying Ethereum smart contracts for transparency,” arXiv preprint
arXiv:1907.09208, 2019.

[22] “Fork - Blocksec,” accessed: 2024-11-10. [Online]. Available: https:
//blocksec.com/fork

[23] “Forks - Tenderly documentation,” accessed: 2024-11-10. [Online].
Available: https://docs.tenderly.co/forks

[24] D. Ressi, R. Romanello, C. Piazza, and S. Rossi, “AI-enhanced
blockchain technology: A review of advancements and opportunities,”
Journal of Network and Computer Applications, p. 103858, 2024.

[25] “Solidity,” https://docs.soliditylang.org/en/v0.8.23/. [Online]. Available:
https://docs.soliditylang.org/en/v0.8.23/

[26] Z. Zhang, Z. Lin, M. Morales, X. Zhang, and K. Zhang, “Your exploit
is mine: instantly synthesizing counterattack smart contract,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 1757–
1774.

[27] X. Deng, Z. Zhao, S. M. Beillahi, H. Du, C. Minwalla, K. Nelaturu,
A. Veneris, and F. Long, “A robust front-running methodology for ma-
licious flash-loan DeFi attacks,” in 2023 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPS). IEEE,
2023, pp. 38–47.

[28] SunWeb3Sec, “Defihacklabs,” 2024. [Online]. Available: https://github.
com/SunWeb3Sec/DeFiHackLabs

[29] Z. Chen, Y. Liu, S. M. Beillahi, Y. Li, and F. Long, “OpenTracer: A dy-
namic transaction trace analyzer for smart contract invariant generation
and beyond,” arXiv preprint arXiv:2407.10039, 2024.

[30] ——, “Demystifying invariant effectiveness for securing smart con-
tracts,” Proceedings of the ACM on Software Engineering, vol. 1, no.
FSE, pp. 1772–1795, 2024.

[31] “Openchain,” https://openchain.xyz/, 2024, accessed: 2024-11-11.
[32] “Tenderly explorer dashboard,” https://dashboard.tenderly.co/explorer,

2024, accessed: 2024-11-11.
[33] “Etherscan: Ethereum blockchain explorer,” https://etherscan.io, 2024,

accessed: 2024-11-11.
[34] “Damn vulnerable DeFi,” https://www.damnvulnerabledefi.xyz/, 2024,

accessed: 2024-11-11.

