
University of Michigan, Ann Arbor

Accelerate Regular Expresssion
Synthesis via Subexpression Queries

Report of EECS499 Advanced Directed Study

Author
Zhiyang Chen

Advisor
Prof. Xinyu Wang

December 9, 2020

Contents

1 Overview 1

2 Background 3
2.1 Domain Specific Language(DSL) . 3
2.2 Example of Motivation . 3

3 Problem Formulation 5

4 Approach 6
4.1 Algorithm . 6
4.2 Heuristic Function to find sub-expressions 7
4.3 Depth by depth synthesis . 7

5 Evaluation 8
5.1 Benchmarks used . 8
5.2 Evaluation Methods & Results. 8

6 Conclusion & Future Thoughts 11

i

Chapter 1

Overview

In computer science, program synthesis is the task of automatically finding a program
in the underlying programming language that satisfies the user intent expressed in the
form of some specification. After the development of first automated theorem provers,
there was a lot of pioneering work on deductive synthesis approaches. The main idea
behind these approaches was to use the theorem provers to first construct a proof of the
user-provided specification, and then use the proof to extract the corresponding logical
program. But the deductive synthesis approaches assumed a complete formal specification
of the desired user intent was provided, which in many cases proved to be as complicated
as writing the program itself. This lead to new inductive synthesis approaches that were
based on inductive specifications including input-output examples[1], natural languages[2],
and partial programs[3].

However, examples are inherently an under-specification, i.e. there might be multiple pos-
sible programs in a rich hypothesis space that are consistent with a given set of examples.
Given enough examples, one can refine the specification such that only desired programs
are consistent.

For example, during one regular expression synthesis task, the experimenter gave the
following examples:

+91789 , Positive Example

91789 , Positive Example

91+ , Negative Example

9+1 , Negative Example

abc&ˆ , Negative Example

Figure 1.1: The input-output examples

Even though it is clear for experts that the user’s intent is to find a regular expression
that accepts strings starting with an optional + sign, followed by a sequence of digits.
There are some simpler regular expression that can also match these positive and negative
examples as Figure 1.2

The regular expressions in the Figure 1.2 perfectly matches all input-output examples,
However, since there is no way the synthesizer can read users’ intent apart from input-
output examples, the synthesizer has to consider every possible regular expression. As

1

endwith(<9>)

contain(<8>)

contain(<7>)

repeatatleast(or(<num>,<+>),5)

repeatatleast(or(<num1-9>,<+>)),5)

Figure 1.2: The input-output examples

a result, the synthesizer prunes a subset of program space only if all regular expressions
in that subspace cannot satisfy some of input-output examples. As a result, it spends
a lot of time on all branches, therefore cannot expand to some specific directions. For
another, when synthesis results return, users have to think about more counter-examples
to dispute those correct but not desired regular expressions, which is a heavy workload
for users.

2

Chapter 2

Background

2.1 Domain Specific Language(DSL)
In this project, I use the same regex domain specific languages as a previous regular
expression synthesis paper[4]. The domain specific languages they defined are briefly
included below:

e := startwith(e) | endwith(e) | contain(e) | concat(e1, e2) | not(e) | or(e1, e2) | and(e1, e2)
| optional(e) | star(e) | repeat(e, k) | repeatatleast(e, k) | repeatrange(e, k1, k2)
| <num> | <let> | <low> | <cap> | <any> | · · · | <a> | | · · ·

Figure 2.1: The DSL for regular expressions.

Many common regular expressions can be converted into this predefined domain-specific
language, shown in Figure 2.1. This DSL includes character classes as basic building
blocks. <num> is a character class that matches any digits from 0 to 9. <let> is another
character class that matches any English letters. <low>, <cap>, <any> match lower-case
letters, upper-case letters, and any characters, respectively. In addition to these general
character classes, this DSL also includes specific character classes that match only one
character, e.g., <d> only matches letter d.

The DSL also includes operator to combine character classes. For example, contain(<let>)
recognizes any strings that end with an English letter, and star(<num>) matches a se-
quence of digits of arbitrary length. This DSL provides high-level abstractions that are
essentially wrappers of standard regex. This makes DSL programs more amenable to
program synthesis as well as readable to users.

It is noted that in a AST tree, character classes are the leafs while operators are the
nodes. Therefore every sub-tree of a AST tree also represents a regular expression.

2.2 Example of Motivation
The motivation of this project starts from a stack-overflow regular expression post. In this
post, the desired regular expression is supposed to match the following eligible format:

3

https://stackoverflow.com/questions/18091324/regex-to-match-all-us-phone-number-formats

(xxx)xxxxxxx

(xxx) xxxxxxx

(xxx)xxx-xxxx

(xxx) xxx-xxxx

xxxxxxxxxx

xxx-xxx-xxxxx

Figure 2.2: The positive examples(here x stands for any number)

The ground-truth regular expression is \(?\d{3}\)?-? *\d{3}-? *-?\d{4}.

Obviously this expression is a very complicated one. If we convert it into an AST tree,
the depth of that AST tree will be more than 6 and the number of operators will be
more than 10. If we simply use current state-of-the-art synthesizer like [4] to synthesize
this regex, it may take hours or even days, for the reason that program space will grow
exponentially w.r.t. depth.

However, some observations can be made about this complicated ground-truth regex and
user given input-output examples:

• The character classes of the ground-truth regex can be easily inferred from positive
examples. For example, <(>, <num>, <->. Additionally, it shouldn’t be too hard for
people to identify which character class should be included in ground-truth.

• Some parts of the ground-truth regex match certain part of positive examples. For
example, \d{3} always matches xxx, \(? might match "(" in example 1, 2, 3, 4.

Based on the above observations, it is possible to find some properties about the ground-
truth program via observations before the synthesis begins, and the synthesizer can use
these properties to accelerate and prioritize search.

4

Chapter 3

Problem Formulation

As mentioned in the previous chapters, it is possible to reveal some properties of the
ground-truth program before synthesis starts, and if we get these properties confirmed by
users, it can largely prune the search space when doing enumeration.

Based on the observations, I find the sub-expressions of a program is easy to identify. For
example, in the previous example, it is easy to observe that all positive examples contain
three consecutive numbers, which indicates \d{3} might be contained in the ground-truth
program.

Definition 1 (Sub-expression). Suppose the AST tree of a program P0 is T0, the AST tree
of another program P1 is T1. P1 is said to be a sub-expression of P0 if and only if there
exists t ∈ {subtrees of T0}, such that T1 ≡ t.

Since the correctness of sub-expressions need to be confirmed by users, it is necessary
to limit the query times. When the number of queries are fixed, this problem can be
formulated as:

Definition 2 (Sub-expression Query Problem). Suppose an oracle is able to answer obser-
vational properties about the ground-truth program. Sub-expression Query Problem can
be expressed as, given a set of input-output examples and an oracle, find the maximum
number of sub-expressions of the ground-truth when the number of queries is fixed.

5

Chapter 4

Approach

4.1 Algorithm

Algorithm 1: Sub-expression synthesis and query
Input: A set of input-output examples, an oracle of the ground-truth program, a

upper limit of number of queries MaxQuery
Output: A set of sub-expressions of the ground-truth program
Queue worklist = {e};
query = 0;
List SubExpressions = {};
PriorityQueue Candidates = {};
for Depth = 1,2,3,... do

Candidates = inplace− synthesis(worklist, SubExpressions)
for c in Candicates do

if query > MaxQuery then
return SubExpressions

end
if Oracle(c) then

SubExpressions.add(c)
if FulfillDepth(Depth) then

Break
end

end
query = query + 1

end
end

In Algorithm 1, inplace−synthesis refers to enumeration using sub-expressions of the last
layer, and rank using a heuristic function. For example, using the example of Figure 2.2,
after the synthesizer knows in the ground-truth program, there are only three character
classes, <(>, <)>, <num>. Then it can use these three character classes as basis to enumer-
ate regular expressions of depth = 2, and rank the likelihood of these regular expressions
using a heuristic function. An expected outcome is that regexes like repeat(<num>,3),
optional(<(>) are ranked very high.

6

4.2 Heuristic Function to find sub-expressions
In this project, a heuristic function is used to evaluate the likelihood of a program to be
a sub-expression of the ground-truth program.

The heuristic function consists of the following components:

1. Coverage. Coverage refers to the extent that the positive examples are (con-
secutively) matched by a program. For example, suppose a positive example is
"342-123-4566", and the program is repeat(<num>,3). Then "342", "123", "456"
match repeat(<num>,3). So the coverage score of repeat(<num>,3) on the positive
example "342-123-4566" is 9

12
= 0.75. The higher the coverage score is, the more

likely this program is a sub-expression of the ground-truth program.

2. Occurrence. Occurrence refers to the number of matches in a positive example.
For example, the occurrence of repeat(<num>,3) on the positive example "342-123-
4566" is 3, since three matches are found("342", "123", "456"). The occurrence of
repeat(<num>,4) on the positive example "342-123-4566" is 1, since only one match
is found("4566"). As a result, repeat(<num>,3) is more likely to be a sub-expression
of the ground-truth program compared to repeat(<num>,4). Additionally, extra
score is given to programs which have the same occurrences across all positive ex-
amples. This extra score turns out to be very effective for special character classes
such as <->

3. Penalty for uncertainty. As a supplement of previous two scores, it is necessary
penalty to "uncertain programs". "Uncertain programs" refers to the program that
contains "uncertain character" or "uncertain operators", such as <any>, <optional>,
<not> etc. These programs can easily match every character in all positive examples
therefore get a very high score of coverage and occurrences. Therefore, a penalty is
given to these "uncertain programs", decided by how many "uncertain character"
and "uncertain operators" are included in that program.

4.3 Depth by depth synthesis
When using heuristic functions to compare programs in PriorityQueue Candidates, it
is observed that the query results are not satisfying when programs of all depths are
evaluated together. The reason is that complicated programs can be more flexible to
match parts of positive examples. For example, the score of or<->,<&> is always higher
than <-> or <>. Thus it is not fair to compare them together. Additionally, the programs
with larger depths are built by the programs with smaller depths. The programs with
larger depths should only be evaluated when some of its components are confirmed to be
a sub-expression of the ground-truth program.

Therefore, the idea of depth by depth synthesis is introduced in inplace−synthesis. The
high level idea is to first find sub-expressions of depth 1, then use these sub-expressions
to synthesize sub-expressions of depth 2, etc, until all query times are used up or the
ground-truth program have been revealed in this query process.

7

Chapter 5

Evaluation

5.1 Benchmarks used
To conduct the evaluation, I used the same StackOverflow data set as REGEL[4], which
was obtained by searching StackOverflow using relevant keywords such as "regex", "reg-
ular expression", "text validation" etc.

This data set contains 122 regex-related tasks and their corresponding DSL ground-truth
obtained by directly converting the answer on StackOverflow to DSL. The original data
set also contains both the an English description as well as positive and negative examples.
But for the purpose of this project, only positive and negative examples, and the ground-
truth program are used.

5.2 Evaluation Methods & Results.
To evaluate the effectiveness of Algorithm 1, I ran Algorithm 1 on REGEL benchmarks
with MaxQuery = 20, MaxQuery = 10 and MaxQuery = 0, respectively. The timeout is set
to be 5 minutes. I compare the number of benchmarks solved by three executions, and
the time spent to find the ground-truth programs.

There are three outcomes of an execution.

• match: the algorithm successfully find the ground-truth program or its equivalence.

• not match: the algorithm find programs which satisfy all input-output examples,
but none of them is equivalent to ground-truth.

• timeout: the algorithm fails to find a program which satisfies all input-output ex-
amples.

First, the outcomes of benchmarks are counted, and the results are shown in Figure 5.1,
5.2, and 5.3 respectively.

Comparing Figure 5.1 with Figure 5.2, the effect of more complicated sub-expressions
exposed is evident. With 20 queries, 47.7% benchmarks are solved(mark as ’match’ in
Figure 5.1), whle with 10 queries, only 41.1% benchmarks are solved. The result meets
my expectation. When more complicated sub-expressions are exposed, the synthesizer,

8

using sub-expressions of larger depths, should be able to explore a program space with
larger depths, therefore it will approach to the ground-truth program faster.

Another interesting observation is that, compared to 10 queries, there are more ’timeout’
when 20 queries is used. It can be explained by the definitions of ’not match’ and ’timeout’
in the previous section. With more complicated sub-expressions exposed, these sub-
expressions will be integrated into the next iteration of synthesis, which restricts the
program space a lot so the synthesizer will miss some correct but not desired regexes. In
other words, many programs that satisfy all input-output examples but is not equivalent
to ground-truth programs are pruned as more sub-expressions are exposed.

Figure 5.1: Execution with 20 queries Figure 5.2: Execution with 10 queries

Comparing Figure 5.3 with Figure 5.1 and Figure 5.2, we can conclude the performance
of the synthesizer becomes much better when ten or twenty queries are asked. With-
out any queries, the ground-truth programs are only found in 25.7% benchmarks. With
ten queries, the ground-truth can be found in 41.1% benchmarks. With twenty queries
asked, the ground-truth programs can be found in 47.7% benchmarks. It clearly supports
the conclusion that queries about sub-expressions largely accelerate the synthesizing pro-
cess.

For the benchmarks that all three execution find the ground-truth, I compare their
time spent to find the ground-truth. The Figure 5.4 plots time versus the number of
benchmarks solved. In Figure 5.4, at any time, the synthesizer with 20 queries solves
more benchmarks than the synthesizer with 10 queries, than the synthesizer without
any queries. The Figure 5.4 clearly supports the expectation that sub-expression queries
largely accelerate regular expression synthesis process.

9

Figure 5.3: Execution without queries

Figure 5.4: Time spent to find ground-truth program

Details about experiment results can be found via this Google Sheets.

10

https://docs.google.com/spreadsheets/d/1ditRldxPEp2Sfc3E1THTZstBTikRplzoXLJpwkaAg-E/edit?usp=sharing

Chapter 6

Conclusion & Future Thoughts

Overall, in this project, I proposed an algorithm to synthesize the most probable sub-
expressions of the ground-truth regular expressions based on input-output examples. I
evaluated and testified the effectiveness of sub-expression queries to accelerate regular
expression synthesis.

In the future, we may need a more concrete interactive method for queries about sub-
expressions. As sub-expressions becomes more and more complicated, it may be hard
for end-users to tell whether a program is a sub-expression of another program. Other
visualization methods are needed. One possible way is to highlight sub-expressions in the
original input-output examples, or provide additional examples of sub-expressions to tell
users the meaning of these sub-expressions.

Another problem is that so far our query is only a True/False query. If users answer ’yes’,
then a new sub-expression is confirmed and a lot of information is gained. But if users
answer ’no’, little information is gained. One possible way to use negated queries is to
choose next query based on previous query results. In other words, in the next round
of selecting regular expression queries, apart from the heuristic function, previous query
results should also be considered.

11

	Overview
	Background
	Domain Specific Language(DSL)
	Example of Motivation

	Problem Formulation
	Approach
	Algorithm
	Heuristic Function to find sub-expressions
	Depth by depth synthesis

	Evaluation
	Benchmarks used
	Evaluation Methods & Results.

	Conclusion & Future Thoughts

